Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2310478, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054854

RESUMO

White-light detection from the visible to the near-infrared region is central to many applications such as high-speed cameras, autonomous vehicles, and wearable electronics. While organic photodetectors (OPDs) are being developed for such applications, several challenges must be overcome to produce scalable high-detectivity OPDs. This includes issues associated with low responsivity, narrow absorption range, and environmentally friendly device fabrication. Here, an OPD system processed from 2-methyltetrahydrofuran (2-MeTHF) sets a record in light detectivity, which is also comparable with commercially available silicon-based photodiodes is reported. The newly designed OPD is employed in wearable devices to monitor heart rate and blood oxygen saturation using a flexible OPD-based finger pulse oximeter. In achieving this, a framework for a detailed understanding of the structure-processing-property relationship in these OPDs is also developed. The bulk heterojunction (BHJ) thin films processed from 2-MeTHF are characterized at different length scales with advanced techniques. The BHJ morphology exhibits optimal intermixing and phase separation of donor and acceptor moieties, which facilitates the charge generation and collection process. Benefitting from high charge carrier mobilities and a low shunt leakage current, the newly developed OPD exhibits a specific detectivity of above 1012  Jones over 400-900 nm, which is higher than those of reference devices processed from chlorobenzene and ortho-xylene.

2.
Mater Horiz ; 10(12): 5564-5576, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37872787

RESUMO

We report on the use of molecular acceptors (MAs) and donor polymers processed with a biomass-derived solvent (2-methyltetrahydrofuran, 2-MeTHF) to facilitate bulk heterojunction (BHJ) organic photovoltaics (OPVs) with power conversion efficiency (PCE) approaching 15%. Our approach makes use of two newly designed donor polymers with an opened ring unit in their structures along with three molecular acceptors (MAs) where the backbone and sidechain were engineered to enhance the processability of BHJ OPVs using 2-MeTHF, as evaluated by an analysis of donor-acceptor (D-A) miscibility and interaction parameters. To understand the differences in the PCE values that ranged from 9-15% as a function of composition, the surface, bulk, and interfacial BHJ morphologies were characterized at different length scales using atomic force microscopy, grazing-incidence wide-angle X-ray scattering, resonant soft X-ray scattering, X-ray photoelectron spectroscopy, and 2D solid-state nuclear magnetic resonance spectroscopy. Our results indicate that the favorable D-A intermixing that occurs in the best performing BHJ film with an average domain size of ∼25 nm, high domain purity, uniform distribution and enhanced local packing interactions - facilitates charge generation and extraction while limiting the trap-assisted recombination process in the device, leading to high effective mobility and good performance.

3.
ACS Appl Mater Interfaces ; 15(31): 37748-37755, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505202

RESUMO

Solution-processed organic photodetectors with broadband activity have been demonstrated with an environmentally benign solvent, ortho-xylene (o-xylene), as the processing solvent. The organic photodetectors employ a wide band gap polymer donor PBDB-T and a narrow band gap small-molecule non-fullerene acceptor CO1-4F, both dissolvable in o-xylene at a controlled temperature. The o-xylene-processed devices have shown external quantum efficiency of up to 70%, surpassing the counterpart processed with chlorobenzene. With a well-suppressed dark current, the device can also present a high specific detectivity of over 1012 Jones at -2 V within practical operation frequencies and is applicable for photoplethysmography with its fast response. These results further highlight the potential of green-solvent-processed organic photodetectors as a high-performing alternative to their counterparts processed in toxic chlorinated solvents without compromising the excellent photosensing performance.

4.
Nanoscale ; 14(12): 4538-4547, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35257132

RESUMO

To sensitively detect multiple and cross-species disease-related targets from a single biological sample in a quick and reliable manner is of high importance in accurately diagnosing and monitoring diseases. Herein, a surface-enhanced Raman scattering (SERS) sensor based on a functionalized multiple-armed tetrahedral DNA nanostructure (FMTDN) immobilized silver nanorod (AgNR) array substrate and Au nanoparticle (AuNP) SERS tags is constructed to achieve both multiplex detection and enhanced sensitivity using a sandwich strategy. The sensor can achieve single, dual, and triple biomarker detections of three lung cancer-related nucleic acid and protein biomarkers, i.e., miRNA-21, miRNA-486 and carcinoembryonic antigen (CEA) in human serum. The enhanced SERS signals in multiplex detections are due to the DNA self-assembled AuNP clusters on the silver nanorod array during the assay, and the experimentally obtained relative enhancement factor ratios, 150 for AuNP dimers and 840 for AuNP trimers, qualitatively agree with the numerically calculated local electric field enhancements. The proposed FMTDN-functionalized AgNR SERS sensor is capable of multiplex and cross-species detection of nucleic acid and protein biomarkers with improved sensitivity, which has great potential for the screening and clinical diagnosis of cancer in the early stage.


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nanotubos , Neoplasias , Biomarcadores Tumorais , DNA , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nanotubos/química , Prata/química , Análise Espectral Raman
5.
Nat Commun ; 12(1): 2414, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893313

RESUMO

The use of hydrogen as a clean and renewable alternative to fossil fuels requires a suite of flammability mitigating technologies, particularly robust sensors for hydrogen leak detection and concentration monitoring. To this end, we have developed a class of lightweight optical hydrogen sensors based on a metasurface of Pd nano-patchy particle arrays, which fulfills the increasing requirements of a safe hydrogen fuel sensing system with no risk of sparking. The structure of the optical sensor is readily nano-engineered to yield extraordinarily rapid response to hydrogen gas (<3 s at 1 mbar H2) with a high degree of accuracy (<5%). By incorporating 20% Ag, Au or Co, the sensing performances of the Pd-alloy sensor are significantly enhanced, especially for the Pd80Co20 sensor whose optical response time at 1 mbar of H2 is just ~0.85 s, while preserving the excellent accuracy (<2.5%), limit of detection (2.5 ppm), and robustness against aging, temperature, and interfering gases. The superior performance of our sensor places it among the fastest and most sensitive optical hydrogen sensors.

6.
Nanotechnology ; 30(42): 425203, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31368449

RESUMO

The magneto-plasmonic properties of Ag-Co composite nano-triangle arrays are investigated. Both plasmonic and magnetic properties of the samples are found to strongly depend on the composition ratio of Ag and Co. Composite nano-triangle arrays exhibit strong plasmonic properties and low magneto-optics (MO) effect with high composition of Ag, and vice versa. The enhanced magneto-optic effect is also observed to be coincident with the localized surface plasmon resonance (LSPR) properties, i.e. the maximum Faraday effect occurs at the LSPR wavelength, which is due to locally high E-field. The composite triangle arrays with the 60% Co content show high plasmonic-MO performances characterized by magneto-optics-plasmonic correlation factor. All experimental results are confirmed by finite-difference time domain calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...